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SUPERSONIC FLUTTER OF A THERMALLY STRESSED FLAT PANEL 

WITH UNIFORM EDGE LOADS* 

By Harry G. Schaeffer and Walter L. Heard, Jr. 
Langley Research Center 

The e f f ec t  of a nonuniform, self-equi l ibrat ing s t r e s s  s t a t e  associated 
with a parabolic temperature d i s t r ibu t ion  i s  included i n  the  f l u t t e r  analysis  
of a rectangular, simply supported panel subjected t o  airflow over one surface 
and uniform edge loads. Linearized, s t a t i c ,  two-dimensional aerodynamics i s  
used i n  conjunction with th in-p la te  theory t o  formulate the  problem. Numerical 
r e s u l t s  f o r  a square panel show t h a t  nonuniform se l f -equi l ibra t ing  s t r e s s e s  a r e  
as important as uniform s t r e s ses  i n  affect ing f l u t t e r  behavior. 

INTRODUCTION 

Dynamic i n s t a b i l i t y  of t h i n  p l a t e l ike  s t ruc tures  i n  a gas flow i s  a prob- 
A s  a r e s u l t  of lem which has received considerable a t ten t ion  i n  recent years. 

t h e  high ve loc i t i e s  a t t a inab le  by modern a i r c ra f t ,  severe aerodynamic loading 
of ex te r io r  skin panels frequently occurs and can lead t o  panel f l u t t e r .  (See, 
f o r  example, ref. 1.) 
inves t iga tors  have taken i n t o  account such e f f ec t s  as panel configuration, flow 
orientat ion,  boundary conditions, and uniform midplane s t r e s s .  However, e f f e c t s  
of thermally induced, self -equilibrating, midplane s t r e s s  have not been 
examined. 

I n  the  treatment of pane l - f lu t te r  problems, t heo re t i ca l  

It has already been shown i n  reference 2 t h a t  a system of uniform s t r e s s e s  
can g rea t ly  reduce t h e  f l u t t e r  speed of an unbuckled panel. The purpose of t h e  
present paper i s  t o  inves t iga te  t h e  e f f ec t s  of a nonuniform, self-equi l ibrat ing,  
s t r e s s  s t a t e  on the  f l u t t e r  behavior of a f l a t ,  uniformly s t ressed panel. Since 
a nonlinear temperature d i s t r ibu t ion  could eas i ly  r e s u l t  from aerodynamic 
e f fec ts ,  it is  assumed f o r  t h e  present analysis t h a t  t he  nonuniform s t r e s s  s t a t e  
i s  thermally induced by a parabolic temperature d i s t r ibu t ion  which i s  constant 
through the  thickness.  
of s e l f  -equilihrRt.irg mict~lzr,e streoscs. 

However, t he  r e su l t s  a r e  va l id  f o r  any similar system 

Par t  of t h e  information presented herein w a s  offered as a t h e s i s  by the  * 
secczxl zx tbo r  ia p&i:tiui fuiFii iment of t ne  requirements f o r  the  degree of 
Master of Science i n  Engineering Mechanics, Virginia Polytechnic I n s t i t u t e ,  
Blacksburg, Virgina, December 1964. 
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For the purpose of t h i s  ana lys i s  t he  panel i s  considered t o  be simply 
supported against  l a t e r a l  def lect ions,  but unrestrained t o  inplane displace- 
ments at  the boundaries. 
forces  are assumed t o  be those resu l t ing  from Ackeret theory. 
proceeds by using t h e  Galerkin technique i n  conjunction with an assumed s t r e s s  
funct ion t o  determine an  approximate midplane s t r e s s  d i s t r ibu t ion  corresponding 
t o  t h e  assumed temperature var ia t ion  and boundary conditions. 
s t r e s s  d i s t r ibu t ion  i s  then subs t i tu ted  i n t o  t h e  l i n e a r  p a r t i a l  d i f f e r e n t i a l  
equation governing lateral  def lect ions of t h i n  p l a t e s  i n  combined bending and 
compression. 
t i o n s  for  t h e  f l u t t e r  behavior, and numerical r e s u l t s  a r e  presented f o r  a 
square panel subjected t o  various combinations of uniform loading applied at  
t h e  boundaries . 

I n  order t o  simplify t h e  ana lys i s  t h e  aerodynamic 
The analysis  

This thermal 

The Galerkin procedure i s  used again t o  obtain approximate solu- 

SYMBOLS 

%n amplitude coef f ic ien ts  (see eq. (11)) 

a panel  length 

b panel width 

D ,3 
12(1 - $1 panel  s t i f fnes s ,  

E Young ’ s modulus 

h panel thickness 

2 



L r s  aerodynamic loading coef f ic ien t  

Z 

M Mach number 

M r s  

Nx, Ny, Nxy 

aerodynamic pressure load per  uni t  area 

coef f ic ien t  defined by equation (A?) 

midplane stress re su l t an t s  

midplane uniform s t r e s s  resu l tan ts  NXOJYO 

midplane thermal s t r e s s  resu l tan ts  NxT> NYT, NxyT 

Pr s  coef f ic ien t  defined by equation (A6)  

9 dynamic pressure 

Q r  s 

R t o t a l  number of terms i n  flow d i rec t ion  

coef f ic ien t  defined by equation (A7)  

S t o t a l  number of terms i n  cross-flow d i r ec t ion  

t t i m e  

T temperature 

fQ1 m a x i m u m  amplitude of temperature d i s t r i b u t i o n  

W lateral de f l ec t ion  of panel 

x J Y J z  Cartesian coordinates of panel 

U coef f ic ien t  of thermal expansion 

7 mass dens i ty  of panel 

fi- w h e n  = j 

0 when i # j 
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zqa3 

D J G  
A dynami c-pre s sure parameter, 

Acr c r i t i c a l  value of h 

P Poisson's r a t i o  

cp Airy stress funct ion 

ciEha2m1 
thermal stress parameter, 

rr?D 
Jr 

52 generalized eigenvalue 

w frequency 

Not at ion 

When subscr ipts  follow a comma, they ind ica te  p a r t i a l  d i f f e r e n t i a t i o n  
of t h e  pr inc ipa l  symbol with respect t o  t h e  subscr ipts .  

STATEMENT OF PROBLEM AND ANALYSIS 

A flat ,  rectangular panel of length a, width b, and uniform thickness  h, 
as shown i n  f igure  1, i s  considered i n  t h i s  ana lys i s .  
ported on a l l  edges, exposed t o  supersonic a i r f low a t  Mach number M over one 
surface, and subjected t o  a nonlinear temperature d i s t r i b u t i o n  i n  
the  middle plane. 
expansion; however, uniform loading, Nxo and Nyo, which i s  independent of 
t h e  temperature d i s t r ibu t ion  may be applied at  t h e  boundary. 

The panel i s  simply sup- 

T = T(x,y) 
The panel edges are considered t o  be unrestrained t o  thermal 

Basic Equations 

In  t h i s  analysis  th in-p la te  theory including t h e  e f f e c t s  of inplane loads 
i s  used. The basic  equilibrium equations f o r  t h i s  case are 
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. 
Nx,x + Nxy,y = 0 

Ny,y + Nxy,x = 0 1 
It i s  assumed t h a t  Nx and Ny a re  posi t ive i n  compression and t h a t  a l l  mte- 
r i a l  propert ies  are t o  be evaluated at the average panel temperature. 

An approximate expression f o r  t he  aerodynamic pressure load  2 is  obtained 
by use of l inear ized,  s t a t i c ,  two-dimensional aerodynamics (Ackeret theory).  
This approximation not only grea t ly  s implif ies  t he  analysis,  but as shown i n  
reference 3, yie lds  e s sen t i a l ly  t h e  same f l u t t e r  results as exact aerodynamics 
at  M h  1.3 f o r  uniformly s t ressed panels, except when the  s t r e s s  l e v e l  causes 
two modes of o s c i l l a t i o n  t o  have the  same, o r  nearly t h e  same, frequency. 
i f  care i s  taken t o  avoid these s t r e s s  levels,  Ackeret theory should a l s o  be 
appl icable  t o  the  nonuniform stress problem of t h e  present analysis,  so that 

Thus, 

The midplane force  in t ens i ty  terms i n  equations (1) and (2)  are wr i t ten  as 
t h e  sum of those induced by applied, uniform, normal forces  a t  t h e  boundary 
(subscr ipt  
(subscr ipt  T) as follows: 

0 )  and those resu l t ing  from the nonlinear temperature d i s t r ibu t ion  

The thermally induced s t r e s ses  a r e  determined ,A terms of a s t r e s s  func- 
t i o n  cp = Cp(x,y) defined by the  following relat ions:  

This s t r e s s  funct ion iden t i ca l ly  satisfies the equilibrium conditions given by 
equations (2) .  For compatibil i ty of inplane s t r a i n s ,  the  stress fi lxticz m s t  
Sat i s fy  the following p a r t i a l  d i f f e r e n t i a l  equation ( r e f .  4): 

+Cp = mv2r (5) 

where 
t u r e  and the  temperature T i s  a function of x and y. Note t h a t  the  s ign 

a is  t h e  coef f ic ien t  of thermal expansion at  the  average p l a t e  tempera- 
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of t h e  right-hand s ide i s  opposite t o  t h a t  normally encountered, because d i r e c t  
s t r e s ses  are pos i t ive  i n  compression. 

The panel boundary conditions have been chosen i n  such a way t h a t  they can 
be sa t i s f i ed  by using ra ther  simple functions. 
analysis  i s  g rea t ly  simplified, but s t i l l  predicts  t rends which one may expect 
t o  be val id  f o r  t he  ac tua l  panel. 

Thus, t h e  resu l t ing  f l u t t e r  

The condition t h a t  t h e  panel be f r e e  from thermally induced normal and 
shear s t resses  on the  boundaries requires t h a t  the  s t r e s s  function s a t i s f y  t h e  
following boundary conditions: 

The condition t h a t  t he  panel boundaries be simply supported requires  t h a t  
the  displacement function s a t i s f y  the  following boundary conditions: 

The analysis which follows consis ts  of two par t s .  
assumed stress function cp 
technique; then, t he  s t a b i l i t y  determinant i s  determined from t h e  def lec t ion  
equation, again by using t h e  Galerkin technique. 

F i r s t ,  t h e  coef f ic ien t  of an 
i s  determined approximately by using t h e  Galerkin 

Solution of S t ress  Function Equation 

The temperature d is t r ibu t ion ,  considered i n  t h i s  problem, va r i e s  paraboli- 
c a l l y  i n  the flow and cross-flow d i rec t ions  and may be represented by 

where aT1 is  t h e  m a x i m u m  amplitude of the temperature d i s t r ibu t ion .  

I n  order t o  simplify t h e  subsequent f l u t t e r  analysis,  it i s  assumed t h a t  
an approximate s t r e s s  function i s  of t h e  following form: 

This approximation of t he  stress function satisfies a l l  t h e  boundary conditions 
given by equations (7),  but does not s a t i s f y  equation (6 ) .  
by applying t h e  Galerkin technique t o  equation (6)  t o  evaluate the constant C. 
The resu l t  i s  

The best  f i t  i s  made 
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The accuracy of equation (9) i n  approximating the  t r u e  s t r e s s  s t a t e  associated 
with the  temperature d i s t r ibu t ion  w i l l  be assessed subsequently. 

Solution of Di f fe ren t ia l  Equation 

It i s  assumed t h a t  t h e  solut ion of equation (1) can be represented as 
follows : 

mnx nxY .iot )+ amn s i n  - s i n  - a b w(x,y,t) = Re 
m = l  n = l  

where t h e  frequency o is, i n  general, complex. Each term of t h e  assumed 
solut ion s a t i s f i e s  t he  given boundary conditions on w. 

After subs t i tu t ing  equations ( 3 ) ,  ( k ) ,  ( 5 ) ,  (lo), and (11) i n t o  equa- 
t i o n  (1) and applying t h e  Galerkin procedure, t he  following s e t  of equations i s  
obtained f o r  the  amplitude coef f ic ien ts  amn: 

where 

a a ( 13a) 
m=l n=l  

abn3 
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r = l ,  2, 3, . . . 
s = l ,  2, 3,  . . . 

and 

7ha 4 2  CD 

I I D  
k 2 =  

2 
NYoa =-  

I12D 

The in tegra ls  (I1)rs, (12)rs, and (13)rs which arise due t o  t h e  nonuniform 

stress d is t r ibu t ion  and the  in t eg ra l  Lrs 
loading are  evaluated i n  appendix A .  By using t h e  r e s u l t s  of appendix A, equa- 
t i o n  (12) becomes 

which arises due t o  aerodynamic 

where 

r = l ,  2, 3, . . . R 

s = 1, 3, 5 ,  . . . 2s-1 

and 
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The coeff ic ients  Lrs ,  Mrs, Prs, and Qrs are defined by equations ( A l ) ,  
(A5) ,  (A6) ,  and (A7) ,  respectively.  

The parameter i s  analogous t o  t h e  nondimensional, midplane, uniform 
s t r e s s  parameters Rxo and Ryo and may be thought of as a thermal stress 

parameter. The range of t h e  indices r and s i s  R and 2s-1, respectively, 
where R i s  the  t o t a l  number of s ine terms i n  the  flow d i rec t ion  and S i s  
t h e  t o t a l  number of s ine  terms i n  the  cross-flow d i rec t ion .  
terms corresponding t o  an odd number of half  waves i n  t h e  cross-flow d i rec t ion  
need t o  be considered, since, f o r  t he  symmetric temperature d i s t r ibu t ion  used, 
even and odd cross-flow terms uncouple and the  odd terms lead t o  t h e  lowest 
( c r i t i c a l )  f l u t t e r  speed. Thus, equations (14) represent R S  (R-times-S) 
l inear ,  homogeneous, a lgebraic  equations f o r  t h e  RS unknown amplitude 
coef f ic ien ts  ars. In  order t h a t  nontr ivial  solut ions of t h e  system of equa- 
t i o n s  (14) exist, it i s  necessary t h a t  t h e  determinant of coef f ic ien ts  vanish. 
Thus, t h e  s t a b i l i t y  c r i t e r ion  may be wri t ten i n  t h e  following form: 

Only t h e  s ine 

det(Aij  - QSij) = 0 (15) 

where Q i s  t h e  eigenvalue. 

Since t h e  problem i s  one of determining t h e  s t a b i l i t y  of a given form of 
solution, it i s  most na tura l  and advantageous t o  associate  t h e  eigenvalue with 
t h e  frequency parameter k2. Then, for t h e  nonconservative problem, the  system 
i s  dynamically unstable when t h e  eigenvalue 52 becomes complex. This implies, 
according t o  equation (ll), t h a t  t h e  system diverges i n  an o s c i l l a t i n g  fashion. 
The problem now i s  t o  determine t h e  relat ionship t h a t  must e x i s t  between the  
parameters a/b, Rxo, Ryo, h, k2, and Jr i n  order t h a t  t h e  system be s tab le  
i n  t h e  sense described. 

For t h e  case where R = 2 and S = 1, t h a t  is, 

a11 s i n  + a21 s i n  - 2fix)sin - fiY . i W t  b a a 

equation (15) s implif ies  t o  t h e  point where it i s  possible t o  determine an 
ana ly t i ca l  expression f o r  values of h 
panel. This r e s u l t  i s  

corresponding t o  harmonic motion of t h e  

9 



The c r i t i c a l  value of h can be found by maximizing A, expression (16), 
w i t h  respect t o  k2. Solving f o r  k2 and subs t i tu t ing  the  r e su l t  i n t o  equa- 
t i o n  (16) gives 

where A,, 
t o  f l u t t e r .  

i s  the  c r i t i c a l  value of t h e  dynamic-pressure parameter which leads 

For higher ordered modal solutions,  t h e  algebraic  d i f f i c u l t i e s  i n  obtaining 

For t h e  computer solu- 
expressions similar t o  equations (16) and (17) are formidable, and recourse i s  
m a d e  t o  an i t e r a t i v e  procedure using a d i g i t a l  computer. 
t i o n  t h e  eigenvalues a re  calculated, and the  lowest value of h f o r  which two 
of the eigenvalues coalesce i s  sought. The approximate modal solut ions con- 
sidered are f o r  t he  cases where 
and R = 6, S = 3. The coeff ic ients  associated with the l a t t e r  case have been 
calculated from equations (14), and t h e  general  matrix equation i s  presented i n  
appendix B. The coef f ic ien ts  associated wi th  the other  cases can be determined 
by deleting appropriate rows and columns. 

R = 4, S = 1; R = 6 ,  S = 1; R = 6, S = 2; 

DISCUSSION OF RESULTS 

Thermal S t ress  Distr ibut ion 

An approximate stress d i s t r ibu t ion  has been assumed i n  order t o  simplify 
the  subsequent dynamic analysis.  
mine t h e  e f f ec t  of the stress s t a t e  associated with a nonlinear temperature dis-  
t r ibu t ion  on the  f l u t t e r  charac te r i s t ics ,  it i s  important t o  consider t h e  accu- 
racy w i t h  which the s t r e s ses  obtained from t h e  assumed stress function approxi- 
mate the  t r u e  stress state. The t r u e  stress state associated w i t h  t h e  parabolic 
temperature d i s t r ibu t ion  has been determined by t h e  f in i te -d i f fe rence  method of 
reference 5 .  

Since the  purpose of t h i s  paper i s  t o  deter-  

Comparisons between t h e  one-term approximation and a f in i te -d i f fe rence  
Figure 2 shows t h e  var ia t ion  of solution a r e  presented i n  f igures  2 and 3. 

Nq with x fo r  specif ied values of y, and f igure  3 shows t h e  var ia t ion  of 
with x f o r  specif ied values of y. The normal s t r e s s  determined by the  NxYT 
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one-term approximation and t h a t  determined by t h e  f in i te -d i f fe rence  solut ion 
agree qui te  w e l l  ( f i g .  2).  I n  t h e  case of t h e  shear stress d i s t r ibu t ion  
( f i g .  3), t h e  agreement i n  magnitude i s  not as close as t h a t  f o r  t h e  d i r ec t  
stresses; however, it appears tha t  t h e  agreement i s  su f f i c i en t ly  close so tha t  
t h e  overa l l  r e su l t s  can be interpreted w i t h  confidence. 

Effect  of Temperature Distribution on F l u t t e r  Boundary 

The e f f ec t  of t he  parabolic temperature d i s t r ibu t ion  on t h e  f l u t t e r  
behavior of a square panel free of uniform midplane stress i s  shown i n  f igu re  4. 
The results are presented f o r  a 6-by-3 ( R  = 6; S = 3) term solution. The in t e r -  
sect ion of t h e  f l u t t e r  boundary with the A-axis is  t h e  value of Acr associated 
w i t h  t h e  unstressed, unheated panel. This value decreases as Jr increases 
(AT1 increases),  u n t i l  t h e  f l u t t e r  boundary becomes tangent t o  the curve labeled 
"thermal buckling loop. 

The th ree  regions shown i n  f igu re  4 are characterized by the  value of t h e  
I n  the  region labeled "panel f lat ,  no f l u t -  frequency parameter squared (k2). 

ter ," k2 i s  real and posit ive;  hence, (u is  real. I n  t h e  region labeled 
" f lu t t e r , "  k2 i s  complex; thus, w is  complex and at  l e a s t  one root w i l l  lead 
t o  osc i l la t ing ,  divergent panel motion. 
no f l u t t e r , "  k2 i s  negative; thus, (u i s  pure imaginary and t h e  panel i s  
s t a t i c a l l y  unstable. 

I n  t h e  region labeled "panel buckled, 

These three regions are separated by two boundaries. The f i rs t  i s  t h e  
buckling loop which i s  t h e  locus of points  f o r  which 
t h e  f l u t t e r  boundary which i s  the locus of points at  which two frequencies 
coalesce. 
s t a t i c  buckling loop, s ince t h i s  point represents t he  l i m i t  of l i n e a r  p l a t e  
theory. T h i s  t r a n s i t i o n  point i s  of considerable importance, because experience 
has shown t h a t  it represents t h e  lowest value of associated w i t h  th i s  
panel configuration. 

k2 = 0. The second i s  

The f l u t t e r  boundary i s  terminated at  i t s  point of tangency w i t h  the 

hcr 

Figure 4 shows t h a t  t h e  s t r e s s  d i s t r ibu t ion  associated w i t h  a parabolic 
temperature d i s t r ibu t ion  can cause a 6 ~ p e r c e n t  reduction i n  the  value of 
associated with an unheated, unstressed panel. 
of t h e  magnitude of AT1 which causes an e f fec t  of t h i s  order, AT1 i s  com- 
puted f o r  a representat ive square aluminum panel w i t h  

show t h a t  a temperature difference of only 27' F between t h e  center and t h e  
edges of t h e  panel causes t h e  61-percent reduction i n  

Acr 
I n  order t o  give an indicat ion 

a = 300. The r e s u l t s  

her. 

The e f f e c t  of t h e  parabolic temperature d i s t r ibu t ion  on t h e  f l u t t e r  bound- 
S r y  assccintzci v i th  u i i i fo rm compressive loads i n  t h e  flow d i rec t ion  i s  shown i n  
f igure  5 f o r  t h e  6-by-3 term analysis .  
t h e  exact so lu t ion  establ ished i n  reference 2 and shows how the  c r i t i c a l  value 
of t h e  dynamic-pressure garameter vnrfps  wjth  q?plied unifo;--, l G G 5 i i - G  i i i  Sit: 
flow d i rec t ion .  Increasing values of JI lower the f l u t t e r  boundary. 

The curve labeled "J r  = 0" i s  e s sen t i a l ly  

11 



The regions of s t a b i l i t y  and i n s t a b i l i t y  are not shown i n  f igure  5 but are. 
similar t o  those shown i n  f igure 4; however, i n  f igure  5 the  dynamic-pressure 
parameter i s  p lo t ted  against  Rx0 instead of J r .  For every curve represented 
by some constant value of JI, there i s  an associated buckling loop. The dashed 
l i n e  represents t h e  locus of points  where the  f l u t t e r  boundary becomes tangent 
t o  i t s  corresponding buckling loop. 

The decrease i n  hc r  due t o  a parabolic temperature d i s t r ibu t ion  i s  of t he  
same order of magnitude as t h e  decrease i n  due t o  a uniform compressive 
load i n  the x-direction. The comparable reductions i n  hcr  due t o  t h e  two dif-  
f e ren t  parameters indicate  t h a t  t he  e f f ec t  of t he  nonuniform temperature d is -  
t r i bu t ion  is  a s  important as tha t  of uniform compressive stress. Since the 
nonuniform stress d i s t r ibu t ion  could have resul ted from causes other  than a 
temperature d is t r ibu t ion ,  t h e  previous statement can be generalized t o  say t h a t  
any system of nonuniform self-equi l ibrat ing s t r e s ses  may have a s igni f icant  
e f f ec t  on panel f l u t t e r  behavior. 

Acr 

Reference 2 shows t h a t  uniform compressive loads applied perpendicular t o  
t h e  direct ion of airflow have v i r t u a l l y  no e f f ec t  on the f l u t t e r  of a uniformly 
s t ressed  panel. It i s  of i n t e re s t ,  therefore,  t o  inves t iga te  the  e f f ec t  of 
Ryo f o r  the  present case. I n  f igure  6 t h e  r e l a t ion  between hcr  and Rxo i s  
presented f o r  various values of t he  stress r a t i o  
t h e  f l u t t e r  boundaries due t o  are not s ign i f icant  and cannot be p lo t t ed  
on the  scale presented. However, t he  t r a n s i t i o n  point between the  f la t -pane l  
and the buckled-panel f l u t t e r  boundaries i s  s ign i f i can t ly  affected as indicated 
by the  loc i  of termination points  of t he  f la t -pane l  f l u t t e r  boundaries. Thus, 
f o r  t h e  given range of parameters and t h e  assumed nonuniform s t r e s s  d i s t r ibu-  
t ion ,  the r e su l t s  of f igure  5 may be used t o  pred ic t  t he  f l u t t e r  behavior of a 
square panel with good accuracy f o r  any combination of RxO, Ryo, and Jr which 

does not cause t h e  panel t o  buckle. 
located.  The l o c i  of these terminal points  f o r  several  values of the stress 
r a t i o  are  shown i n  f igure  6. 

Ryo/Rxo. The differences i n  

Ryo 

Only the  terminal points  need t o  be 

The curves apply f o r  t h e  s t r e s s - r a t io  range 

0 2 $ 1 only, since la rge  pos i t ive  values and l a rge  negative values of t he  
RXO 

r a t i o  may y ie ld  d i f f e ren t  r e s u l t s  - because of changes i n  buckling mode shapes i n  
KYo 
RXO 

t h e  cross-flow d i rec t ion .  When - = 1, t h e  locus of termination points  of 

the f la t -panel  f l u t t e r  boundary i s  e s sen t i a l ly  a hor izonta l  l i n e .  
t h i s  s t r e s s  ra t io ,  the theory predic t s  t h a t  t h e  t r a n s i t i o n  point i s  e s sen t i a l ly  
independent of t h e  r e l a t i v e  magnitudes of applied uniform stress and thermal 
s t r e s s .  

Thus f o r  

Since the  r e s u l t s  presented i n  t h i s  paper were obtained by applying the  
Galerkin technique, there may be some question as t o  convergence toward the 
exact solution of t he  problem. In  order t o  inves t iga te  t h e  question of con- 
vergence, r e s u l t s  f o r  various approximate solut ions are presented i n  f igu re  7. 
The f l u t t e r  boundaries of A,, as a function of Rxo f o r  values of 

1 2  



Jr of 10, 20, 30, and 40 are presented i n  figure 7 f o r  the  2-by-1, 4-by-1, 
6-by-1, 6-by-2, and 6-by-3 term analyses. The s o l i d  curves represent r e s u l t s  
of t h e  6-by-2 and 6-by-3 term analyses whereas t h e  other curves represent t he  
r e s u l t s  of t h e  lower order solutions.  

An examination of figure 7 shows tha t  t h e  f l u t t e r  boundary i s  s ign i f i can t ly  
a l t e r ed  when the  number of terms i n  t h e  flow d i rec t ion  i s  increased from two t o  
four.  
thus, the so lu t ion  i s  assumed t o  be converged f o r  flow-wise terms. 
ment of r e l a t ive ly  few flow-wise terms f o r  convergence i s  not unexpected, s ince 
f o r  t h i s  range of parameters a four-term solut ion gave a close approximation t o  
t h e  exact solut ion i n  reference 2 where JI i s  zero. 

However, a fu r the r  increase t o  s ix  terms exhib i t s  very l i t t l e  e f fec t ;  
The require- 

Inclusion of two cross-flow terms i n  t h e  analysis  instead of only one 
exhibi ts  only a very slight lowering of the f l u t t e r  boundary as may be seen by 
comparison of t h e  6-by-1 and 6-by-2 solutions. 
6-by-1 and 4-by-1 results a re  coincident except i n  f i g .  7(a) where the  6-by-1 
solut ion gives t h e  higher values of 
gives e s sen t i a l ly  t h e  same resu l t s  as the  6-by-2 solut ion and indicates  t h a t  
t h e  6-by-2 solut ion i s  converged f o r  t h e  range of 

(For the  scale  shown, t h e  

her.) Inclusion of t h ree  cross-flow terms 

considered. 

CONCLUDING REMARKS 

Nonuniform stresses associated w i t h  a parabolic temperature d i s t r ibu t ion  
a r e  shown t o  be as important i n  a f fec t ing  panel f l u t t e r  behavior as uniform 
loading applied i n  t h e  d i rec t ion  of a i r f l o w .  
uniform loading applied perpendicular t o  the d i rec t ion  of airflow has v i r t u a l l y  
no e f f e c t  on the  f l u t t e r  boundaries f o r  values of the  stress r a t i o  
from 0 t o  1, t h e  t r a n s i t i o n  point between t h e  f la t -pane l  f l u t t e r  boundary and 
t h e  buckled-panel f l u t t e r  boundary i s  s igni f icant ly  affected.  A s  t h i s  stress 
r a t i o  approaches t h e  value of 1, t h e  t r ans i t i on  point becomes e s sen t i a l ly  inde- 
pendent of r e l a t i v e  magnitudes of applied uniform loading and thermal stress. 

It i s  a l s o  shown t h a t  although 

Ryo/Rxo 

Because of t h e  e f fec ts  of the  nonuniform stresses shown herein, it appears 
t h a t  thermally induced nonuniform s t r e s ses  should be considered i n  t h e  correla- 
t i o n  of experimental f l u t t e r  results with theory. I n  f ac t ,  consideration should 
be given t o  any system of nonuniform, se l f -equi l ibra t ing  s t resses ,  even those 
resul t ing from causes other  than a nonlinear temperature d is t r ibu t ion .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., A u g u s t  12, 1965. 
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APPENDIX A 

LOAD COEFFICIENTS 

Evaluation of t h e  i n t e g r a l  resu l t ing  from t h e  aerodynamic loading 
(eq. ( l3a)) gives the  following expression: 

m # r  

where t h e  notation m # r 
m = r a r e  t o  be omitted. 

ind ica tes  t h a t  t h e  terms i n  t h e  sum associated with 

The in tegra ls  ( Q r s Y  (12)rsY and (13)rs given by equations (13b), 

( l3c) ,  and ( l3d) ,  respectively, are evaluated by making use of t h e  spec i f ic  
de f in i t i on  of t h e  stress function given by equation (9).  The r e s u l t  i s  

where 

14 



APPENDIX A 

9 t- 
16rr4r2s2 ars 

A s  i n  equation ( A l ) ,  t he  notat ion 
the sums associated with m = r and n = s are t o  be omitted. 

m { r, n f s ind ica tes  t h a t  t he  terms i n  
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